On a Subposet of the Tamari Lattice
نویسندگان
چکیده
We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989). Résumé. Nous discutons d’un subposet du treillis de Tamari introduit par Pallo. Nous appellons ce poset le comb poset. Nous montrons que trois fonctions binaires qui ne se comptent pas bien dans le trellis de Tamari se comptent bien dans un intervalle du comb poset : distance dans le trellis de Tamari, le supremum et l’infimum et les parsewords communs. De plus, nous discutons un rapport entre ce poset et un ordre partiel dans le groupe symétrique étudié par Edelman.
منابع مشابه
Chains of Maximum Length in the Tamari Lattice
The Tamari lattice Tn was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Although in several related lattices, the number of maximal chains is known, quoting Knuth, “The enumeration of such paths in Tamari lattices remains mysterious.” The lengths of maximal chains vary over a great range. In this paper, we focu...
متن کاملExtending the Tamari Lattice to Some Compositions of Species
COMPOSITIONS OF SPECIES STEFAN FORCEY Abstract. An extension of the Tamari lattice to the multiplihedra is discussed, along with projections to the composihedra and the Boolean lattice. The multiplihedra and composihedra are sequences of polytopes that arose in algebraic topology and category theory. Here we describe them in terms of the composition of combinatorial species. We de ne lattice st...
متن کاملTamari lattices and noncrossing partitions in type B and D
The usual, or type An, Tamari lattice is a partial order on T A n , the triangulations of an (n+3)-gon. We define a partial order on T B n , the set of centrally symmetric triangulations of a (2n + 2)-gon. We show that it is a lattice, and that it shares certain other nice properties of the An Tamari lattice, and therefore that it deserves to be considered the Bn Tamari lattice. We define a bij...
متن کاملTamari Lattices and the symmetric Thompson monoid
We investigate the connection between Tamari lattices and the Thompson group F , summarized in the fact that F is a group of fractions for a certain monoid F sym whose Cayley graph includes all Tamari lattices. Under this correspondence, the Tamari lattice operations are the counterparts of the least common multiple and greatest common divisor operations in F sym. As an application, we show tha...
متن کاملMinimal Paths between Maximal Chains in Finite Rank Semimodular Lattices
We study paths between maximal chains, or “flags,” in finite rank semimodular lattices. Two flags are adjacent if they differ on at most one rank. A path is a sequence of flags in which consecutive flags are adjacent. We study the union of all flags on at least one minimum length path connecting two flags in the lattice. This is a subposet of the original lattice. If the lattice is modular, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 31 شماره
صفحات -
تاریخ انتشار 2014